K8·凯发(中国)天生赢家·一触即发 K8·凯发(中国)天生赢家·一触即发

中华建筑网
2024-11-19 作者:凯发K8国际首页登录入口 阅读量:

  2024年6月,嫦娥六号着陆器携带的五星红旗在月球背面成功展开,这一抹亮㊣眼的“中国红”由玄武岩拉成的细丝织就,代表了国际纤维材㊣料技术前沿。早在远古时期,人类✅就开始利用动物皮毛、树皮和草叶等天然纤维材料制成衣物抵御寒冷。与人类社会同步发展的纤维材料,正借助一系列新技术✅焕发新貌,从缝制衣服的布料演进为服务于衣食住行和生产生活方方面面的先进基础材料。

  纤维材料是指具有足够的细度(直径<100微米)和长径比(长度/直径>1000),具有定向导向性、可编程性、可柔性加工的物质。纤维材料技术诞生于实用需要。伴随体✅毛逐渐退化,人类学会了从亚麻、棉花、羊毛和蚕丝等动植物中提取纤维,将其精制成更为柔软和耐✅用的布料。在古印度,棉花被织成布✅料,由此传遍世界各地;古埃及人用亚麻制作衣物;中国的丝绸不仅实用与美感兼具,也以此为纽带形成了沟通世界的丝绸之路,推动了贸易发展与文明交流。这些天然纤维来自大自然,从原有材料或人工饲养培植的动植物身上直接取得,普遍具有较好的吸湿性、透气性、亲肤性和环境友好特性,主要应用于纺织工业。

  天然纤维细度和长度不均匀、伸长能力弱,化学纤维技术应运而生。早在1664年,科学家提出设想:对天然高分子或人工合成高分子材料进行加工处理,制成纤维✅材料。但由㊣于当时人们对纤维的基本结构知之甚少,这一想法直到200多年后的19世纪才得以实现。1891年,人造丝(粘胶纤维)首次制造成功,标志着人类开始✅有能力制造化学纤维。1935年,聚酰胺纤维的㊣发㊣明,开创了合成纤维的历史。这种纤维材料还有一个人们熟悉的俗称:尼龙。尼龙的耐磨性是棉花的10倍,强度比棉花高1—2倍、比羊毛高4—5倍,能经受上万次弯折而不断裂,化学㊣稳定性强,是衣物、绳索等的理想材料,在多个领域迅速取代✅天然纤维。紧随其后,由有机二元酸和二元醇通过化学缩聚得到的合成高分子制成的聚酯纤维(涤纶)、以石油精炼副产物丙烯为原料制成的聚丙烯纤维(丙纶)等合成纤维相继问世。

  除㊣✅了尼龙、涤纶、丙纶,常见的合成㊣纤维还有腈纶、氯纶、维纶、氨纶和聚烯烃弹㊣力丝等。这些纤维材料均由合成的高分子化合物制成,就像自然界中的新物种,以其独有的特性和优势,拓宽了纤维材料的应用范围,不仅在日常生活中扮演着重要角色,还在工业生产中展现出巨大的潜力新材料。

  20世纪下半叶,合成纤维材料迎㊣来高速发展时期。随着人工合成高分子材料的大量涌现和现代高分子科学的进步,高性能纤维作为合成纤维家族的新成员逐渐崭露头角。科学家们巧妙利用分子设计、高分子合成与纤维加工技术,创造出一㊣系列性能优异的先进✅纤㊣维材料。比如,碳纤维是一种含碳量在90%以上的㊣高强高模纤维,具有高强✅度、轻质㊣和耐高温特性,直径只有头发丝的1/10至1/12,强度却是铝合金的4倍以上,在航✅空航✅天、体育器材和高铁汽车等领域大显身手。又如芳香族聚酰胺纤维(芳纶),以其防弹、防火和耐化学腐蚀的特性,在工业防护和军事领域占据重要地位。还有超高分子量聚乙烯纤维,以其极高的强度和优㊣异的耐磨性能,成为高强度绳索的首选。

  单就材料性能而言,合成纤维似乎已经到达极限,但科技发展永远需要想象力。在不少科幻电影里,人们身上的衣服不仅可以“七十二变”,还集成了✅各种电子产品,像一位智慧超群的得力助手。随着材料科学不断发展并与光学中华建筑网、电磁学、信息技术等其他学科交叉融合,智能纤维材料有望让科幻场景变成现实。

  智能纤维材料集成传㊣感器和各种功能材料,能够敏锐感知并响应外界环境的微妙变化。这样的特性源自其多尺度精细结构,独特的光、电、力、热、磁性能以及柔性✅㊣功能。由此,便携式电㊣子产品、人机㊣接口电极、能量存储和转换设备等都能够集成于纤维㊣状智能材料,并被编织成可穿戴、可响应、可美化的柔性纺织品,在智慧监测、智慧医疗、智慧交通、智慧生活等领域发挥重要作㊣用。

  以一种㊣新型“不插电”智能纤维为例,它基于与人体相匹配的能量交互机制,集无线能量采集、信息㊣感知与传输等功能于一身。这种纤维编织成的✅智能纺织品,无需依赖传统的芯片㊣和电池,便能实现发光显示、触控等人机交互功能,有效简化可穿戴设备和智能纺织品的硬件结构,有望解决目前可穿戴设备“不舒服”的难题。这一突破性成果,为人与环境的智能交互开辟新的可能,展现了智能纤维材料的广泛应用前景。未来,智能纤维将在与生产✅生活各领域的融合发展✅中,伴随我们走进更加智能、便捷和舒适的未来生活。

  在交叉融合✅以外,新型纤维材料也在最基础、最本质的材料来源上努力实现突破。科学家们将目光投向遥远的月球,创制一种神奇的纤维材料——月壤纤维。月壤,这层覆盖在㊣月球表面的神秘面纱,由细小的岩石、矿物颗粒和微小的玻璃珠组成。它的主✅要成分包括㊣硅酸盐、氧化物和少量金属元素,通过高温熔融和拉丝技术,这些成分可以转化为具有✅卓越性能的纤维材料。在地球上,玄武岩纤维以其优异的力学性能、耐腐蚀性、宽广的工作温度范围和低热导率,成为建筑、交通等领域的重要材料。月壤与地球的玄武岩矿石在成分和性质上有着惊人的相似之处。借鉴地球✅上玄武岩纤维的㊣制备技术,利用月壤拉制的纤维有望㊣成为月球基地建设材料,满足原位取材需求。有了“造房子”的材料,到地球外长期居住㊣并进行能源开发也许会成为现实,进而打开人类通往宇宙深处的大门。

  随着科技不断进步,新型纤维材料的研究应用正迈上新的台阶。目前,科研工作者正充分利用材料科学、物理化学、电子信息、系统科学等✅多学科知㊣识,不断创制新型纤维材料,赋予其前所未有的性能和功能。直径更细、链取向更好、结构缺陷更少,以最小能量实现更复杂功㊣能及更高性能,成为新型纤维材料的发展方向。除了性能上㊣的飞跃,未来的纤维材料还将对自然更加友好。基于人类的可持续发展,生物基纤维和生物可降解纤维的创新开发,将为我们解决环境污染问题提供新的思路。

  由于纤维材料的柔性和多样化的可加工特性,其应用✅已经超越了传统织物㊣和纺织品,在战略性新✅兴产业如人工智能、电子信息、航空航天、新能源、生物㊣㊣医㊣药等领域具有更广泛的应用。纤维新材料的发展具有高科技、高效能、高质量特㊣征,亟须与物理、化学、生物、医学和信息技术等融合,开发具有高性能、多功能、更智能和可持续的纤维材料与器件,实现多功能耦合与杂化,满足未来产业的应用需求。随着基础研究的发展和纤维制造技术的进步,中国化纤行业稳步增长,世界上大约70%的合成纤维产自中国。然而,国内基础理论与高性能纤维及其复合材料的产业发展仍然落后于发达国家。一些关键技术的工业化仍未解决,因此部分高性能纤维和复合材料仍然依赖进口。纤维材料,特别是高性能、生物基和可持续纤维材料,在“十四五”规划中被列为亟须改进和发展的关键战略性材料。

  与此同㊣✅时,人工智能正在影响着每个人的生活,具有交互式功能的智能纤维被认为是下一代纤维。随着纳米技术和材料科学的发展进✅步,我们团队通过有机—无机杂化策略,引入多功能基元,设计构筑跨尺度(包括分子、纳米、微米级)结✅构,并建立功能耦合和传递机制,将智能功能融入纤维中,以实现光电转换、力学响应和生物兼容性等多种功能。基于多尺度精细结构及独特的光、电、力、热、磁性能的一维材料体系成为“F(Functional)+I(Intelligence)+B(Brainy)+E(Electronic)+R(Responsive)”闭环系统的重要组成部分。基于智能纤维的便携式电子产品、人机接口电极、能量存储和转换设备可以被编织成可穿戴纺织品,未来将在智慧监测、智慧医疗、智慧交通、智慧生活等领㊣域发挥关键作用。

  总体而言,纤维制备的挑战是如何制备具有更细直径、更好链取向、更少结构缺陷并以最小的能量实现更复杂功能的纤维。纤维科学已经成长为一个多学科交叉的研究前沿,纤维技术也成为影响和引导现代工㊣业发展方向的重要技术领域。纤维材料作为新质生产力的典型代表,其发展目标是通过技术创新和突破,充分利用材料科学、物理化学、电子信息、系统科学等多㊣学科知识,基于耦合和杂化理念,创制纤维新材料,服务国家战略产业和产业转型升级。

  一根根纤㊣维,见证了人类的发展,连接着未来生活。从天然纤维的质朴,到合成纤维的多样,再到智能纤维的奇妙,纤维材料每一次技术革新和发展,都不断为人类生活增添新的色彩,带来新的惊喜。

  如今,纤维材料科学已成为多学科✅交叉的研究前沿,纤维技术也成为现代工业发展的重要组成部分。我们期待,更多先进纤维材料为生产生活带来便㊣利,为中国产业转型升级注入强劲动㊣力。

  (作者为中国科学院院士,东华大学材料科学与工程学院院长、纤维材料改性国家重点实验室主任;长期从事纤维材料的复合化、功能化和智能化研究,提出并建立了热塑性聚合物纤维功能化设计思路和全✅流程功能化技术体系,创建了介观诱导制备智能纤维的新方法;获国家技术发明奖二等奖、国家科技进步奖二等奖、何梁何利科学与技术青年创新奖、全国创新争先奖状等)

上一篇:全国建筑公司排名
下一篇:每日建筑网
微信
微博
QQ空间
更多